Variation der Konstanten

Aus testwiki
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Die Variation der Konstanten ist ein Verfahren aus der Theorie linearer gewöhnlicher Differentialgleichungen zur Bestimmung einer speziellen Lösung eines inhomogenen linearen Differentialgleichungssystems erster Ordnung bzw. einer inhomogenen linearen Differentialgleichung beliebiger Ordnung. Vorausgesetzt wird hierfür eine vollständige Lösung (Fundamentalsystem) der zugehörigen homogenen Differentialgleichung.

Leonhard Euler benutzte einen Vorläufer dieser Methode bereits 1748 im Zusammenhang mit astronomischen Problemen.[1][2] In seiner heutigen Form wurde das Verfahren von dem Mathematiker Joseph-Louis Lagrange entwickelt.[3]

Motivation

Lineare Differentialgleichung erster Ordnung

Seien a: und b: stetige Funktionen, dann lautet die lineare Differentialgleichung erster Ordnung[4]

y(x)=a(x)y(x)+b(x).

Definiere die Funktion

A(x):=x0xa(t)dt,

wobei x0 geeigneten Randbedingungen genügen muss, so ist A eine Stammfunktion von a. Dann ist

{y(x)=ceA(x) | c}

die Menge aller Lösungen der homogenen Differentialgleichung y(x)=a(x)y(x).

Zur Lösung der inhomogenen Differentialgleichung wird nun die Funktion c(x) eingeführt und der Ansatz der Variation der Konstanten gewählt:

y(x)=c(x)eA(x).

Dies ergibt eine eindeutige Zuordnung zwischen den Funktionen y und c, denn expA ist eine stets positive, stetig differenzierbare Funktion. Die Ableitung dieser Ansatzfunktion ist

y(x)=c(x)a(x)eA(x)+c(x)eA(x)=a(x)y(x)+c(x)eA(x).

Also löst y die inhomogene Differentialgleichung

y(x)=a(x)y(x)+b(x)

genau dann, wenn

c(x)=b(x)eA(x)

gilt. Beispielsweise ist

c(x):=x0xb(t)eA(t)dt

eine solche Funktion und somit

ysp(x):=eA(x)x0xb(t)eA(t)dt

die spezielle Lösung mit ysp(x0)=0. Also ist

{y(x)=eA(x)[x0xb(t)eA(t)dt+c] | c}

die Menge aller Lösungen der inhomogenen Differentialgleichung y(x)=a(x)y(x)+b(x).

Beispiel

Liegt an einer Spule mit der Induktivität L und dem ohmschen Widerstand R eine Gleichspannung U0 an, so gilt für die Spannung an dem Widerstand

U(t)=U0LI˙(t).

Nach dem ohmschen Gesetz gilt zudem

I(t)=U(t)R=U0RLRI˙(t).

Es handelt sich also um eine inhomogene lineare Differentialgleichung erster Ordnung mit konstanten Koeffizienten, die nun mithilfe des Verfahrens der Variation der Konstanten gelöst werden soll.

Für die zugehörige homogene Differentialgleichung Ih

I˙h(t)=RLIh(t)

lautet die allgemeine Lösung

Ih(t)=ceRLt

für ein beliebiges, aber konstantes c.

Als Ansatz für die Lösung der inhomogenen Differentialgleichung ersetze man die Konstante c durch einen variablen Ausdruck c(t). Man setzt also

I(t):=c(t)eRLt

und versucht, eine differenzierbare Funktion c(t) so zu bestimmen, dass I die inhomogene Differentialgleichung erfüllt. Es folgt

U0RLRI˙(t)=U0RLRc˙(t)eRLt+LRc(t)RLeRLt=U0RLRc˙(t)eRLt+c(t)eRLt=U0RLRc˙(t)eRLt+I(t).

Demnach ist die inhomogene Differentialgleichung genau dann gelöst, wenn gilt

U0RLRc˙(t)eRLt=0.

Diese Randwertbedingung ist gleichbedeutend mit c˙(t)=U0LeRLt oder nach Integration mit c(t)=U0ReRLt+d. Somit lautet die Lösung der inhomogenen Differentialgleichung

I(t)=U0R+deRLt.

Die Konstante d lässt sich aus der Anfangsbedingung bestimmen und ergibt für I(0)=0 die Lösung

I(t)=U0RU0ReRLt.

Inhomogene lineare Differentialgleichungssysteme erster Ordnung

Das obige Verfahren lässt sich auf folgende Weise verallgemeinern[5]:

Formulierung

Seien A:n×n und b:n stetige Funktionen und Φ(x)=(y1(x) |  | yn(x)) eine Fundamentalmatrix des homogenen Problems y(x)=A(x)y(x) sowie Φk(x) diejenige Matrix, die aus Φ(x) entsteht, indem man die k-te Spalte durch b(x) ersetzt. Dann ist

ysp(x):=k=1nck(x)yk(x)

mit

ck(x):=x0xdetΦk(s)detΦ(s)ds

die Lösung des inhomogenen Anfangswertproblems y(x)=A(x)y(x)+b(x) und y(x0)=0.

Beweis

Setze

ysp(x):=Φ(x)x0xΦ(s)1b(s)ds .

Es ist ysp(x0)=0, und wegen Φ(x)=A(x)Φ(x) sieht man durch Differenzieren, dass ysp die Differentialgleichung ysp(x)=A(x)ysp(x)+b(x) erfüllt. Nun löst

a(s):=Φ(s)1b(s)n

für festes s das lineare Gleichungssystem

Φ(s)a(s)=b(s) .

Nach der cramerschen Regel ist somit

ak(s)=detΦk(s)detΦ(s) , k=1,,n .

Also gilt

ysp(x)=x0xΦ(x)a(s)ds=k=1n[x0xdetΦk(s)detΦ(s)ds]yk(x) .

Spezialfall: Resonanzfall

Falls die Inhomogenität b selber Lösung des homogenen Problems ist, d. h. b(x)=A(x)b(x), so bezeichnet man dies als Resonanzfall. In diesem Fall ist

 ysp(x):=(xx0)b(x)

die Lösung des inhomogenen Anfangswertproblems y(x)=A(x)y(x)+b(x) und y(x0)=0.

Inhomogene lineare Differentialgleichungen höherer Ordnung

Das Lösen einer Differentialgleichung höherer Ordnung ist äquivalent zum Lösen eines geeigneten Differentialgleichungssystems erster Ordnung. Auf diese Weise kann man obiges Verfahren nutzen, um eine spezielle Lösung für eine Differentialgleichung höherer Ordnung zu konstruieren.[6]

Formulierung

Seien a0,,an1,b: stetige Funktionen und Φ(x) eine Fundamentalmatrix des homogenen Problems y(n)(x)=k=0n1ak(x)y(k)(x), deren erste Zeile (y1(x) |  | yn(x)) lautet, sowie Φk(x) diejenige Matrix, die aus Φ(x) entsteht, indem man die k-te Spalte durch (00b(x)) ersetzt. Dann ist

ysp(x):=k=1nck(x)yk(x)

mit

ck(x):=x0xdetΦk(s)detΦ(s)ds

die Lösung des inhomogenen Anfangswertproblems y(n)(x)=k=0n1ak(x)y(k)(x)+b(x) und y(x0)=0.

Beweis

Man betrachte zunächst das hierzu korrespondierende Differentialgleichungssystem erster Ordnung, bestehend aus n Gleichungen

 Y(x)=A(x)Y(x)+B(x) mit A(x):=(0101a0(x)a1(x)an1(x)) , B(x):=(00b(x)) .

Es gilt: y(x) löst die skalare Gleichung n-ter Ordnung genau dann, wenn Y(x):=(y(x)y(x)y(n1)(x)) Lösung obigen Systems erster Ordnung ist. Per definitionem ist Φ eine Fundamentalmatrix für dieses System erster Ordnung. Darauf wende man schließlich das oben bewiesene Verfahren der Variation der Konstanten an.

Alternative: Grundlösungsverfahren

Im Fall konstanter Koeffizienten ist es gelegentlich von Vorteil, das Grundlösungsverfahren zur Konstruktion einer speziellen Lösung zu verwenden: Ist yh diejenige homogene Lösung von y(n)(x)=k=0n1aky(k)(x), welche

yh(k)(x0)=0 , k=0,,n2 , yh(n1)(x0)=1

erfüllt, dann ist

ysp(x):=x0xyh(x0+xt)b(t)dt

diejenige spezielle Lösung von y(n)(x)=k=0n1aky(k)(x)+b(x) mit ysp(x0)=0.

Beweis

Durch Differenzieren überprüft man

ysp(k)(x)=x0xyh(k)(x0+xt)b(t)dt , k=0,,n1

und

ysp(n)(x)=b(x)+x0xyh(n)(x0+xt)b(t)dt .

Es ergibt sich

ysp(n)(x)k=0n1akysp(k)(x)=b(x)+x0x[yh(n)k=0n1akyh(k)](x0+xt)b(t)dt=b(x) .

Einzelnachweise

  1. Forest Ray Moulton: An Introduction to Celestial Mechanics, 2nd ed. (first published by the Macmillan Company in 1914; reprinted in 1970 by Dover Publications, Inc., Mineola, New York), page 431
  2. Leonhard Euler: Recherches sur la question des inégalités du mouvement de Saturne et de Jupiter, sujet proposé pour le prix de l'année 1748 par l’Académie Royale des Sciences de Paris, France: G. Martin, J.B. Coignard, & H.L. Guerin, 1749, online Bei: Google.com
  3. Joseph-Louis Lagrange: (1766) “Solution de différens problèmes du calcul integral,” Mélanges de philosophie et de mathématique de la Société royale de Turin, vol. 3, pages 179–380.
  4. Wolfgang Walter: Gewöhnliche Differentialgleichungen. 3. Auflage. Springer Verlag, 1986, ISBN 3-540-16143-0, §2, Abschnitt II
  5. Wolfgang Walter: Gewöhnliche Differentialgleichungen. 3. Auflage. Springer Verlag, 1986, ISBN 3-540-16143-0, §16
  6. Differentialgleichungen n-ter Ordnung. In: Otto Forster: Analysis II. Vieweg Verlag, 1977, ISBN 3-499-27031-5, Kapitel II, §12.