Kontiguität (Wahrscheinlichkeitstheorie)
In der Wahrscheinlichkeitstheorie werden zwei Folgen von Wahrscheinlichkeitsmaßen als benachbart oder englisch contiguous bezeichnet, wenn sie asymptotisch denselben Träger haben. Somit erweitert der Begriff der Kontiguität (auch Benachbartheit oder englisch contiguity) den Begriff der absoluten Stetigkeit von Maßen.[1]
Das Konzept wurde ursprünglich von Lucien Le Cam 1960 im Rahmen seiner Beiträge zur abstrakten asymptotischen Wahrscheinlichkeitstheorie eingeführt.[2]
Motivation
Der Satz von Radon-Nikodým verallgemeinert die Ableitung einer Funktion auf Maße:
Für ein σ-endliches Maß auf dem Messraum und ein σ-endliches signiertes Maß , das absolut stetig bezüglich ist (), existiert eine messbare Funktion , so dass
- für alle gilt.
In der asymptotischen Wahrscheinlichkeitstheorie werden statt konstanten Maßen ( und ) Folgen von Wahrscheinlichkeitsmaßen und untersucht. Um den obigen Satz für zwei Folgen von Wahrscheinlichkeitsmaßen zu definieren, muss der Begriff der absoluten Stetigkeit mit dem Konzept der Kontiguität für diese Folgen verallgemeinert werden.
Man nennt ein Maß bezüglich absolut stetig (in Symbolen ), falls für jede messbare Menge , impliziert, dass gilt. Während absolute Stetigkeit fordert, dass der Träger eines Maßes im Träger eines weiteren Maßes enthalten ist, ersetzt die Kontiguität diese Anforderung mit einer asymptotischen Version: Der Träger von ist für große im Träger von enthalten.
Definition
Es sei eine Folge von Messräumen, jeweils mit zwei Wahrscheinlichkeitsmaßen und ausgestattet.
- Die Folge heißt benachbart zu (in Symbolen ), falls für jede Folge von messbaren Mengen, impliziert, dass .
- Die Folgen und heißen wechselseitig benachbart oder englisch bi-contiguous (in Symbolen ), falls benachbart zu und benachbart zu .[3]
Eigenschaften
Le Cams erstes Lemma
Für zwei Folgen von Wahrscheinlichkeitsmaßen auf den Messräumen sind folgende Aussagen equivalent:[6][7][8]
- für alle Teststatistiken
wobei und Zufallsvariablen auf den Wahrscheinlichkeitsräumen sind.
Die Notation bezeichnet die Konvergenz in Verteilung.
Le Cams drittes Lemma
Das dritte Lemma von Le Cam ist eine Version des Satzes von Radon-Nikodým, in dem die absolute Stetigkeit durch Kontiguität ersetzt wird. Es wird wie folgt formuliert:[9]
- Theorem
Sei mit den zwei Folgen von Wahrscheinlichkeitsmaßen auf den Messräumen und eine Folge von Zufallsvektoren und es gelte
.
Dann definiert ein Wahrscheinlichkeitsmaß auf mit für jede messbare Funktion und es gilt .
Für die Konvergenz gegen die mehrdimensionale Normalverteilung folgt daraus folgendes Korollar:
- Korollar
Seien Folgen von Wahrscheinlichkeitsmaßen auf den Messräumen , und sei eine Folge von Zufallsvektoren und es gelte
Dann gilt: .
Anwendungen
Literatur
- Vorlage:Literatur
- Jaroslav Hájek, Zbyněk Šidák (1967). Theory of rank tests. New York: Academic Press.
- Lucien Le Cam (1960). "Locally asymptotically normal families of distributions". University of California Publications in Statistics. 3: 37–98.
- George G. Roussas (2001) [1994], "Contiguity of probability measures", Encyclopaedia of Mathematics, EMS Press
- Aad van der Vaart (1998). Asymptotic statistics. Cambridge University Press.
- George G. Roussas (1972), Contiguity of Probability Measures: Some Applications in Statistics, CUP, ISBN 978-0-521-09095-7.
- D.J. Scott (1982) Contiguity of Probability Measures, Australian & New Zealand Journal of Statistics, 24 (1), 80–88.
- Erich Leo Lehmann, Joseph Paul Romano (2008), Testing Statistical Hypotheses. Springer New York.
Einzelnachweise
- ↑ Wolfowitz J. (1974) Review of the book: "Contiguity of Probability Measures: Some Applications in Statistics. by George G. Roussas", Journal of the American Statistical Association, 69, 278–279 jstor
- ↑ Vorlage:Literatur
- ↑ van der Vaart (1998, S. 87)
- ↑ Reiß, Bemerkung 4.35
- ↑ Bartlett, S. 12
- ↑ Vorlage:Internetquelle
- ↑ Reiß, Lemma 4.36
- ↑ Vorlage:Literatur
- ↑ Bartlett, S. 20
- ↑ Vorlage:Internetquelle