Satz von Jordan-Schur

Aus testwiki
Version vom 12. Dezember 2024, 23:16 Uhr von imported>FerdiBf (math-Umgebung)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Der Satz von Jordan-Schur, auch unter dem Namen Satz von Jordan über endliche lineare Gruppen bekannt, ist ein mathematischer Satz, der in seiner ursprünglichen Form von Camille Jordan[1] stammt. In dieser Form besagt er, dass es eine Funktion f: gibt, so dass es zu jeder endlichen Untergruppe G der allgemeinen linearen Gruppe GL(n,) eine Untergruppe HG gibt, so dass Folgendes gilt:

Da f(n) nicht von G abhängt ist das für festes n ein Endlichkeitssatz für die Quotientengruppen G/H.

Issai Schur hatte ein allgemeineres Ergebnis erzielt, indem er nicht mehr die Endlichkeit der Gruppe voraussetzte, sondern nur noch, dass es sich um eine Torsionsgruppe handelt. Schur zeigte, dass man

f(n)=((8n)12+1)2n2((8n)121)2n2

nehmen kann.[2] Speiser erhielt für n3 und unter der Voraussetzung der Endlichkeit von G die bessere Abschätzung

f(n)=n!12n(π(n+1)+1),

wobei π die Primzahlfunktion ist.[3][4] In einer weiteren Verbesserung konnte Blichfeldt in obiger Formel 12 durch 6 ersetzen. Schließlich zeigte Michael Collins unter der Voraussetzung der Endlichkeit von G mit Hilfe des Klassifikationssatzes endlicher einfacher Gruppen, dass man für n71 die Abschätzungsfunktion f(n)=(n+1)! nehmen kann, und gab eine nahezu vollständige Beschreibung des Verhaltens für kleine n.[5]

Einzelnachweise

  1. Jordan, J. Reine Angew. Math., Band 84, 1878, S. 89–215
  2. Charles W. Curtis, Irving Reiner: Representation Theory of Finite Groups and Associative Algebras, AMS Chelsea Publishing (1962), ISBN 0-8218-4066-5, Theorem (36,14).
  3. Charles W. Curtis, Irving Reiner: Representation Theory of Finite Groups and Associative Algebras, AMS Chelsea Publishing (1962), ISBN 0-8218-4066-5, Ende des Kapitels V.36: Theorems of Jordan, Burnside, and Schur on Linear Groups.
  4. A. Speiser: Die Theorie der Gruppen von endlicher Ordnung, mit Anwendungen auf algebraische Zahlen und Gleichungen sowie auf die Krystallographie, New York: Dover Publications (1945), Seiten 216–220.
  5. M. J. Collins: On Jordan’s theorem for complex linear groups, Journal of Group Theory (2007), Band 10 (4), Seiten 411–423.