Slow Feature Analysis
Slow Feature Analysis ist ein unüberwachter Lernalgorithmus, der invariante oder sich zumindest nur langsam verändernde Merkmale aus einem vektoriellen Signal lernen soll. Er basiert auf der Hauptachsentransformation.[1]
Problembeschreibung
Wenn ein Eingabesignal gegeben ist, wird eine Ein-/Ausgabefunktion gesucht, für die so wenig wie möglich variiert und nicht konstant ist.
Formal schreibt man:
Gegeben sei ein -dimensionales Eingabesignal mit . Finde eine -dimensionale Ein-/Ausgabefunktion , die aus die -dimensionale Ausgabe mit für jedes erzeugt. Dabei müssen für alle folgende Nebenbedingungen erfüllt sein:
wobei die Ableitung nach bezeichnet und ein Durchschnitt über die Zeit ist:
Weblinks
- Laurenz Wiskott et al.: Slow feature analysis. In: Scholarpedia. 6, Nr. 4, 2011, 5282.