Neuromorpher Schaltkreis

Aus testwiki
Version vom 13. Januar 2025, 18:16 Uhr von 2003:cb:2f38:8e6e:f5ad:fd04:f6bb:f66d (Diskussion) (Paradigmen: Das ist gemeint.)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Ein neuromorpher Schaltkreis ist eine elektronische Schaltung, welche dazu dient, im Rahmen des Neuromorphings ein Modell eines Neurons als Hardware abzubilden. Diese Modelle lassen sich zu künstlichen neuronalen Netzwerken verbinden. Neuromorphe Schaltkreise sind ein Spezialfall der neuronalen Schaltkreise.

Ein in CMOS-Technik gefertigtes Neuronenmodell wird hierbei als „Siliziumneuron“ (englisch: Vorlage:Lang,[1] SiN) bezeichnet. Ein Spezialfall ist hierbei der Neuristor, welches ein einfaches Neuronenmodell inklusive Synapsen in einem einzigen Bauteil implementiert.

Module

Neuromorphe Schaltungen werden aus Modulen zu komplexeren Schaltungen kombiniert. Diese Module bilden folgende Eigenschaften nach:[2]

Leitungsdynamik, darunter fallen integrierendes Verhalten sowie Gatingvariablen. Die Generierung von Aktionspotentialen (auch Nervenimpuls oder Spike genannt), Refraktärzeit-Mechanismen, die Anpassung der Spikefrequenz (auch Feuerfrequenz) sowie die Spike-Schwellwert-Anpassung.

Leitungsdynamik

Integratoren

Integratoren werden eingesetzt, um die integrierende Leitungsdynamik eines Neurons nachzubilden. Diese Schaltungen bilden eine Differenzialgleichung erster Ordnung ab. Diese wird der Form

Gsyn=τRCdGsyndt=τRCG˙syn=GinGsyn[2]

dargestellt, um sie mit einem Integrator lösen zu können. Hierbei ist

Gin … eine Eingangsgröße
Gsyn … eine Ausgangsgröße
t … die Zeit
τRC … die Membranzeitkonstante
τRef … die Refraktärzeit

wobei eine Größe in der elektronischen Schaltung durch eine Spannung oder einen Strom repräsentiert wird. Die Teilschaltungen bilden Logarithmusfunktionen sowie Addition und Subtraktion der Größen ab.

Im Regelfall kommen hierbei stromgetriebene Schaltungen zum Einsatz, welche unter der Transistor-Schwellspannung betrieben werden.

Gatingvariablen

Die Gatingvariablen beschreiben den Ladungstransport in einem elektrischen Feld eines Ionenkanals. Dies entspricht direkt der Leitungscharakteristik von Transistoren, weshalb eine Gating-Variable durch einen einfachen Transistor abgebildet wird.[2]

Alternativ können auch Memristoren eingesetzt werden. Diese sind aufwendiger in der Herstellung, aber auch deutlich kompakter als ein vollständiger Transistor. In derzeitigen analog-neuromorphen CMOS-Schaltungen werden Memristoren nicht eingesetzt.

Phänomenologische Modellierung

Eine Möglichkeit, die Leitungsdynamik abzubilden, besteht in der Erstellung einer Schaltung, die das FitzHugh-Nagumo-Modell abbildet. Hierbei handelt es sich um spannungsgetriebene Filter wie etwa Switched-Capacitor-Filter, welche über der Transistor-Schwellspannung betrieben werden.[2]

Module in Siliziumneuronen

Teilschaltungen für Siliziumneuronen bezeichnet man nach der Funktion im biologischen Vorbild.

Synapsen
  • Lineare oder nichtlineare Integration der Eingangs-Spikes.
  • Abbildung zeitabhängiger Eigenschaften wie Kurzzeit- oder Langzeit-Plastizität
  • Umwandlung von Spannungs-Spikes in
Soma (Zellkörper)
  • Lineare oder nichtlineare zeitliche Integration
  • Spike-Generator
  • Refraktärzeit
  • Spike-Frequenz- oder Schwellwert-Anpassung
Dendriten und Axone
werden durch die Leitungstheorie beschrieben und bei Bedarf durch Leiterersatzschaltungen abgebildet.

Paradigmen

Bei neuromorphen Schaltkreisen unterscheidet man zwischen verschiedenen Schaltungsdesign-Paradigmen:

Gegenüberstellung neuromorpher Schaltungsdesign-Paradigmen[2]
Wertdarstellung analog digital
Ausgangssignal einfacher Schwellwert
(künstliches neuronales Netzwerk)
Spikes
(Gepulste neuronale Netze)
Inversion schwache Inversion
(MOSFET im Sub-Threshold-Betrieb)
starke Inversion
(MOSFET im Above-Threshold-Betrieb)
Treiber Spannungsgetrieben Stromgetrieben
Taktsignal Ungetaktet Getaktet
Realismus/Detailgrad Biophysikalisches Modell Phänomenologisches Modell
Geschwindigkeit Echtzeit Beschleunigt
(schneller als Echtzeit)

Verwendung

Konkrete Realisierungen neuromorpher Schaltkreise bilden etwa Hopfield-Netze[3] zur Mustererkennung oder mehrlagige Perzeptrons (MLP) zur Musterklassifikation ab. Moderne neuromorphe Schaltungen unterstützen dabei bestärkendes Lernen mit Hilfe der Hebbschen Lernregel. Zudem beherrschen einige Schaltungen auch sogenanntes Temporal-Difference-Learning durch eine feuerfrequenzabhängige Anpassung (Spike-Rate-Dependent-Plasticity, kurz SRDP) oder eine pulsdauerabhängige Anpassung (Spike-Timing-Dependent-Plasticity, kurz STDP).[4][5]

Einzelnachweise

  1. Vorlage:Internetquelle
  2. 2,0 2,1 2,2 2,3 2,4 Vorlage:Internetquelle
  3. Vorlage:Internetquelle
  4. G. Rachmuth, H. Z. Shouval, M. F. Bear, C. S. Poon: A biophysically-based neuromorphic model of spike rate- and timing-dependent plasticity. In: Proceedings of the National Academy of Sciences. Band 108, Nummer 49, Dezember 2011, S. E1266–E1274, doi:10.1073/pnas.1106161108, PMID 22089232, Vorlage:PMC.
  5. Vorlage:Internetquelle