Gleichung von Bienaymé

Aus testwiki
Version vom 21. Oktober 2024, 09:20 Uhr von imported>Biggerj1 (Wienerprozess)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Die Gleichung von Bienaymé, Bienaymé-Gleichung[1] oder Formel von Bienaymé[2] ist eine Gleichung aus der Stochastik. Sie erlaubt die Berechnung der Varianz einer Summe von Zufallsvariablen und besagt insbesondere, dass sie sich bei unkorrelierten (und demnach auch bei stochastisch unabhängigen Zufallsvariablen) additiv verhält. Die Varianz der Summe unkorrelierter Zufallsvariablen ist also die Summe der Varianzen der Zufallsvariablen.

Die Gleichung ist nach dem französischen Mathematiker Irénée-Jules Bienaymé (1796–1878) benannt, der sie 1853 zeigte.[3] Sie wird unter anderem zur Ermittlung des Fehlers von Monte-Carlo-Simulationen verwendet und ein wichtiges Hilfsmittel zur Umformung von Gleichungen in der Stochastik. So liefert sie beispielsweise in Kombination mit der Tschebyscheff-Ungleichung eine erste Version des schwachen Gesetzes der großen Zahlen.

Aussage

Gegeben seien quadratintegrierbare Zufallsvariablen X1,,Xn, es gelte also E(|Xi|2)< für i=1,,n. Des Weiteren sei Var(X) die Varianz der Zufallsvariable X und Cov(X,Y) die Kovarianz von X und Y.

Die Gleichung von Bienaymé wird in der Literatur nicht einheitlich formuliert. In ihrer allgemeineren Version besagt sie, dass

Var(i=1nXi)=i=1nVar(Xi)+i,j=1ijnCov(Xi,Xj)=i,j=1nCov(Xi,Xj)

gilt.[4]

Spezieller gilt: Sind die Xn paarweise unkorreliert, also Cov(Xi,Xj)=0 für alle i,j{1,,n} mit ij, so gilt

Var(i=1nXi)=i=1nVar(Xi).[5]

Insbesondere gilt dies dann auch für Summen stochastisch unabhängiger Zufallsvariablen, denn aus Unabhängigkeit und Integrierbarkeit folgt die Unkorreliertheit der Zufallsvariablen.[6]

Beispiele

Würfel

Sind beispielsweise X die Augenzahl eines vierseitigen, Y die Augenzahl eines sechsseitigen und Z die Augenzahl eines achtseitigen fairen Würfels. Die Wahrscheinlichkeitsverteilungen der drei Würfel sind diskrete Gleichverteilungen, wodurch sich für die Varianzen der Augenzahlen der einzelnen Würfel

Var(X)=54,Var(Y)=3512   und   Var(Z)=214

ergibt. Nach der Gleichung von Bienaymé beträgt die Varianz der Augensumme X+Y+Z der drei Würfel

Var(X+Y+Z)=Var(X)+Var(Y)+Var(Z)=54+3512+214=113129,42 (da die Würfel unkorreliert sind).

Somit ergibt sich als Standardabweichung der Augensumme ein Wert von etwa 3,07.

Wienerprozess

Vorlage:Hauptartikel

Zwei Beispiele für Pfade eines Standard-Wienerprozesses. Die grau schraffierte Fläche markiert die Standardabweichung ±Var(Wt)=±t.

Betrachtet man den Wienerprozess, so ist dieser durch das stochastische Integral Wt=W0+0tdW gegeben. Die Gaußsche Irrfahrt kann (nach dem Satz von Donsker) benutzt werden um den Wienerprozess zu approximieren:

WNΔtW0+Δti=1NZi,

wobei Z1,Z2,Z3 unabhängige, standardnormalverteilte Zufallszahlen sind. Hierbei wird das Integral diskretisiert und dWΔtZ benutzt.

Die Gleichung von Bienayme liefert für Var(WNΔt)=ΔtN.

Geschätzte Varianz der kumulativen Summe eines Zufallsprozesses, dessen Zufallsvariablen iid normalverteilt sind. Die Stichprobenvarianz ist über 300 Realisierungen berechnet.

Beweis

Die quadratische Integrierbarkeit stellt zunächst sicher, dass alle auftretenden Erwartungswerte und Varianzen endlich sind. Aufgrund der Linearität des Erwartungswertes ist

E(i=1nXi)=i=1nE(Xi).

Somit folgt

i=1nXiE(i=1nXi)=i=1n(XiE(Xi))

Nach Definition der Varianz als Var(X)=E((XE(X))2) folgt durch ausmultiplizieren

E((i=1n(XiE(Xi)))2)=i,j=1nE((XiE(Xi))(XjE(Xj)))=i,j=1nCov(Xi,Xj),

wobei der letzte Schritt durch einsetzen der Definition der Kovarianz folgt. Da aber für i=j folgt, dass Cov(Xi,Xj)=Var(Xi), werden diese Terme in eine separate Summe geschrieben und die Gleichung von Bienaymé folgt.

Die zweite Fassung folgt direkt aus der ersten, da aus Unkorreliertheit per Definition Cov(Xi,Xj)=0 folgt und die eine Summe wegfällt.

Folgerungen

Eine wichtige Folgerung der Gleichung von Bienaymé besteht für Folgen unabhängig und identisch verteilter Zufallsvariablen X1,X2,, die alle die Varianz σ2 aufweisen. Die Varianz des arithmetischen Mittels Xn der ersten n Folgenglieder

Var(Xn)=Var(1ni=1nXi)=1n2i=1nVar(Xi)=σ2n

verhält sich demnach umgekehrt proportional zu n.[7] Zusammen mit der Tschebyscheff-Ungleichung ergibt sich daraus, dass die Folge dem schwachen Gesetz der großen Zahlen genügt, also dass die Mittelwerte stochastisch gegen den Erwartungswert konvergieren.

Der Standardfehler des arithmetischen Mittels

σ(Xn)=Var(Xn)=σn

zeigt, dass das arithmetische Mittel als erwartungstreuer Schätzer für einen unbekannten Erwartungswert eine Rate von 1n aufweist. Aus diesem Grund besitzt der Fehler von klassischen Monte-Carlo-Simulationen eine Konvergenzgeschwindigkeit von 12.[7]

Im Zusammenhang mit zufälligen Messabweichungen ergibt sich aus der Gleichung von Bienaymé im Fall unkorrelierter fehlerbehafteter Größen das gaußsche Fehlerfortpflanzungsgesetz.

Verallgemeinerung

Die Gleichung von Bienaymé kann auch auf gewichtete Summen von Zufallsvariablen verallgemeinert werden. Sind dazu a1,,an reelle Gewichtsfaktoren, dann gilt für die Varianz der gewichteten Summe a1X1++anXn der Zufallszahlen X1,,Xn die Darstellung

Var(i=1naiXi)=i=1nj=1naiajCov(Xi,Xj)=𝐚TΣ𝐚

mit dem transponierten Vektor 𝐚T=(a1,,an) und der Kovarianzmatrix Σ des Zufallsvektors (X1,,Xn)T. Für paarweise unkorrelierte Zufallsvariablen spezialisiert sich diese Gleichung zu

Var(i=1naiXi)=i=1nai2Var(Xi).

Für die Summe von zwei Zufallsvariablen X und Y ergibt sich daraus

Var(X+Y)=Var(X)+2Cov(X,Y)+Var(Y)

und für die Differenz

Var(XY)=Var(X)2Cov(X,Y)+Var(Y).

Für zwei unkorrelierte Zufallsvariablen X und Y ist definitionsgemäß Cov(X,Y)=0. Damit ergibt sich, dass für zwei unkorrelierte Zufallsvariablen die Summe ebenso wie die Differenz gleich der Summe ihrer Varianzen ist, das heißt, es gilt in diesem Fall

Var(X+Y)=Var(XY)=Var(X)+Var(Y).

Falls die Zahl der Summanden selbst eine Zufallsvariablen ist, siehe Blackwell-Girshick-Gleichung.

Siehe auch

Literatur

Einzelnachweise

  1. Klenke: Wahrscheinlichkeitstheorie. 2013, S. 106.
  2. Meintrup, Schäffler: Stochastik. 2005, S. 129.
  3. Georgii: Stochastik. 2009, S. 109.
  4. Klenke: Wahrscheinlichkeitstheorie. 2013, S. 106.
  5. Meintrup, Schäffler: Stochastik. 2005, S. 129.
  6. Vorlage:Literatur
  7. 7,0 7,1 Vorlage:Literatur