Andreas Floer

Aus testwiki
Version vom 26. März 2024, 11:24 Uhr von imported>John Red (Weblink)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen
Andreas Floer 1986 in Bochum

Andreas Floer Vorlage:IPA (* 23. August 1956 in Duisburg; † 15. Mai 1991 in Bochum) war ein deutscher Mathematiker, der wichtige Beiträge zur (symplektischen) Topologie, Differentialgeometrie und mathematischen Physik leistete. Er entwickelte die heute so genannte Floer-Homologie, die sich als wichtiges mathematisches Instrument bewährt hat.

Leben und Werk

Floer studierte an der Ruhr-Universität Bochum Mathematik und erhielt sein Diplom 1982. Danach ging er an die Universität von Berkeley in Kalifornien, wo er über Monopole (in Yang-Mills-Theorien) auf dreidimensionalen Mannigfaltigkeiten mit Alan Weinstein und Clifford Taubes arbeitete. Die Promotion wurde durch die Ableistung des Wehr-Ersatzdienstes unterbrochen, dennoch wurde er bereits 1984 in Bochum bei Eduard Zehnder promoviert.[1]

Floer bewies in seiner Bochumer Dissertation einen Spezialfall (für Abbildungen nahe der Identität) der Arnold-Vermutung über die Fixpunkte von symplektischen Abbildungen (Symplektomorphismen) einer symplektischen Mannigfaltigkeit. Mit dem Teilbeweis der Arnold-Vermutung und mit seiner Entwicklung der Floer-Homologie ab 1985 in Seminaren in Berkeley erregte er große Aufmerksamkeit und hielt eine der Plenar-Ansprachen auf dem Internationalen Mathematikerkongress in Kyōto 1990 (Elliptic methods in variational problems). Die Topologie niedrigdimensionaler Mannigfaltigkeiten ist notorisch schwierig – wie der Fall der Poincaré-Vermutung zeigt, die in den höher dimensionalen Fällen schon 1960 von Stephen Smale bewiesen wurde, im vierdimensionalen Fall erst durch Michael Freedman um 1984 und im dreidimensionalen Fall 2002 von Grigori Perelman. Die Floer-Homologien (es gibt verschiedene) sind heute ein verbreitetes Werkzeug in der Topologie und Differentialgeometrie speziell niedriger Dimensionen.

1986 war Floer an der Stony Brook University in New York, danach am Courant-Institut. 1988 wurde er Assistenzprofessor für Mathematik in Berkeley. 1990 wurde die Assistenzprofessur zu einer vollen Professur umgewandelt. Im selben Jahr wurde er auch Mathematikprofessor in Bochum. 1991 nahm er sich überraschend das Leben.

Seine Theorie hat auch Anwendungen in der Quantenfeldtheorie (z. B. Seiberg-Witten-Theorie), wie auch umgekehrt von dort, insbesondere in Arbeiten von Edward Witten, neue Methoden in die Differentialgeometrie einflossen, speziell in der Klassifikation der differenzierbaren Strukturen auf vierdimensionalen Mannigfaltigkeiten in den Arbeiten von Simon Donaldson (Eichtheorien und Instantonen). Hier besteht eine Analogie zwischen den Instantonen, die auf vierdimensionalen Mannigfaltigkeiten das Yang-Mills-Funktional (die „Energie“) minimieren, und pseudo-holomorphen Abbildungen von Riemannflächen in solche symplektische Mannigfaltigkeiten (bezüglich einer mit der symplektischen Struktur kompatiblen „fast komplexen“ Struktur).

Vor seinem Tod hatte Floer noch Arbeiten über die Anwendung seiner Theorie in der Differentialtopologie (Zerschneidung von Mannigfaltigkeiten, „Chirurgie“, engl. surgery) und in der Untersuchung von Knoten in drei Dimensionen geschrieben. Eine ganze Serie weiterer erst posthum von den Koautoren bis Mitte der 1990er Jahre veröffentlichter Aufsätze zeugt davon, dass sich um ihn schon eine „Schule“ gebildet hatte.

1989 erhielt er von der Alfred P. Sloan Foundation ein Forschungsstipendium (Sloan Research Fellowship).

Im Dezember 2011 eröffnete die Ruhr-Universität Bochum das nach Andreas Floer benannte Floer Zentrum für Geometrie.[2]

Zitate

Vorlage:Zitat

Vorlage:Zitat

Vorlage:Zitat

Schriften

  • Monopoles on asymptotically euclidean 3-manifolds, Bulletin American Mathematical Society, Band 16, 1987, S. 125–127 (die ursprünglich in den USA geplante Dissertation)
  • Proof of the Arnold conjecture for surfaces and generalizations for certain Kähler-Manifolds, Duke Mathematical Journal Band 53, 1981, S. 1–32 (seine Dissertation)
  • Morse theory of fixed points of symplectic diffeomorphisms, Bulletin of the American Mathematical Society, Band 16, 1987, S. 279–281, Project Euclid
  • An instanton-invariant for 3-manifolds, Communications in Mathematical Physics, Band 118, 1988, S. 215–240. Project Euclid
  • Morse theory for Lagrangian intersections, J. Differential Geometry, Band 28, 1988, S. 513–547.
  • Cuplength estimates on Lagrangian intersections, Comm. Pure Appl. Math., Band 42, 1989, S. 335–356.
  • Wittens complex and infinite dimensional Morse theory, Journal Differential Geometry Band 30, 1989, S. 207–221 (Witten hatte in einer aufsehenerregenden Arbeit 1982 die Morsetheorie aus der supersymmetrischen Quantenmechanik gewonnen) Project Euclid
  • Elliptic methods in variational problems, International Congress of Mathematicians, Kyōto 1990
  • Self dual conformal structures on lCP2, Journal Differential Geometry, Band 33, 1991, S. 551–574.
  • Instanton homology and Dehn surgery, in "Floer memorial volume" 1995
  • mit Helmut Hofer Coherent orientation for periodic orbit problems in symplectic geometry, Math. Zeitschrift Band 212, 1993, S. 13–38.
  • dies. Symplectic homology I: Open sets in Cn, Math. Zeitschrift Band 215, 1994, S. 37–88.
  • mit Hofer, Wysocki Applications of symplectic homology I, Math. Zeitschrift, Band 217, 1994, S. 577–606.
  • mit Hofer, Cieliebak Symplectic homology II: A General Construction, Math. Zeitschrift Band 218, 1995, S. 103–122.
  • mit Hofer, Cieliebak, Wysocki Applications of symplectic homology II, Math. Zeitschrift, Band 223, 1996, S. 27–45.
  • mit Hofer, Salamon Transversality results in the elliptic Morse theory of the action functional, Duke Mathematical Journal, Band 80, 1995, 251–292, online hier: http://www.math.nyu.edu/~hofer/publications/trans.ps

Literatur

  • Hofer, Taubes, Weinstein, Zehnder (Hrsg.) The Floer Memorial Volume, Progress in Mathematics, vol. 133, Birkhauser Verlag, 1995.
  • dies., Nachruf Notices American Mathematical Society, August 1991
  • Simon Donaldson, M. Furuta, Dieter Kotschick Floer Homology Groups in Yang-Mills Theory, Cambridge Tracts in Mathematics, Band 147. Cambridge University Press, Cambridge, 2002, ISBN 0-521-80803-0.
  • ders., P. Braam Floers work on instanton homology, knots and surgery. In: Floer memorial volume 1995

Vorlage:Commonscat

Einzelnachweise

  1. Vorlage:MathGenealogyProject
  2. Dr. Gerd Laures: In die Tiefe des Raumes: RUB-Mathematiker eröffnen neues Forschungszentrum. , 5. Dezember 2011. Abgerufen am 20. Dezember 2011.

Vorlage:Normdaten

Vorlage:Personendaten