Gibbs-Ungleichung

Aus testwiki
Version vom 7. Oktober 2024, 15:40 Uhr von imported>Invisigoth67 (form)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

In der Informationstheorie ist die Gibbs-Ungleichung, benannt nach Josiah Willard Gibbs, eine Aussage über die Entropie einer diskreten Wahrscheinlichkeitsverteilung. Man erhält mit ihr eine untere Schranke der mittleren Codewortlänge von optimalen Präfixcodes und eine untere Schranke der mittleren Laufzeit von vergleichsbasierten Sortierverfahren.

Gibbs-Ungleichung

Es seien p=(p1,,pn) und q=(q1,,qn) diskrete Wahrscheinlichkeitsverteilungen, d. h. pi,qi>0 für alle i und i=1npi=i=1nqi=1. Dann gilt:

i=1npilog2pii=1npilog2qi

Gleichheit tritt genau dann auf, wenn pi=qi für alle i.

Beweis

Für alle x>0 gilt die Ungleichung lnxx1, wobei Gleichheit nur im Fall x=1 auftritt.


Setzt man für x insbesondere qipi ein, so erhält man ln(qipi)qipi1i=1,...,n.


Multipliziert man die Ungleichung mit pi durch und summiert über alle i, so erhält man

i=1npiln(qipi)i=1n(qipi)=i=1nqii=1npi=11=0.


Nachdem ln(qipi)=ln(qi)ln(pi) ist, folgt daraus

i=1npiln(qi)i=1npiln(pi).


Bringt man die beiden Terme auf die jeweils entgegengesetzte Seite, so ist

i=1npiln(pi)i=1npiln(qi).


Anstelle des natürlichen Logarithmus lässt sich genauso gut jede andere Logarithmenbasis b>1 verwenden, da logb(x)=ln(x)ln(b) gilt.

Man braucht die Ungleichung hierzu nur mit der positiven Zahl ln(b) durchdividieren.

In der Informationstheorie bietet es sich an als Basis b=2 zu wählen.

Folgerungen

Für die Entropie gilt

H(p1,,pn)log2n,

mit Gleichheit genau dann, wenn pi=1n für alle i.


Wenn X,Y diskrete Zufallsvariablen sind, dann ist

H(X,Y)H(X)+H(Y),

mit Gleichheit genau dann wenn X und Y stochastisch unabhängig sind.


Einige nützliche Anwendungen ergeben sich in Verbindung mit der Kraft-Ungleichung. Sei dazu ein vollständiger Binärbaum mit den Blatttiefen 1,,n und einer den Blättern zugeordneten Wahrscheinlichkeitsverteilung p=(p1,,pn) gegeben. Dann gilt mittels qi:=2i:

H(p1,,pn)i=1npilog22i=i=1npii

Die mittlere Blatttiefe ist also von unten durch die Entropie der dazugehörigen Wahrscheinlichkeitsverteilung beschränkt.

Damit ist dann klar, dass die mittlere Codewortlänge eines optimalen Präfixcodes von unten durch die Entropie der zugehörigen Wahrscheinlichkeitsverteilung der Symbole beschränkt ist. Gleichheit tritt hier genau dann auf, wenn pi=2i für alle i gilt, wobei i die Codewortlänge des i-ten Codewortes bezeichnet.

Bei vergleichsbasierten Sortierverfahren von n Elementen unter Gleichverteilungsannahme ergibt sich durch Betrachtung der mittleren Blatttiefe des binären Entscheidungsbaums die untere Schranke log2n!. Die average-case-Laufzeit eines vergleichsbasierten Sortierverfahrens verhält sich also asymptotisch wie nlogn.

Literatur

  • U. Schöning: Algorithmik. Spektrum Akademischer Verlag, Heidelberg 2001.
  • E. Becker, W. Bürger: Kontinuumsmechanik. Eine Einführung in die Grundlagen und einfache Anwendungen, B.G. Teubner Verlag, Stuttgart 1975.
  • Hermann Rohling: Einführung in die Informations- und Codierungstheorie. B.G. Teubner Verlag, Stuttgart 1995, ISBN 3-519-06174-0.