Chordaler Graph

Aus testwiki
Version vom 9. Mai 2022, 08:28 Uhr von imported>Girus (Abschnittlink korrigiert)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

In der Graphentheorie nennt man einen Graphen G chordal oder trianguliert, genau dann wenn er einer der folgenden äquivalenten Bedingungen genügt:

  • Jeder induzierte Kreis ist ein Dreieck. Ein Kreis ist dabei induziert, genau dann wenn zwischen seinen Knoten keine weiteren Kanten im Ursprungsgraphen existieren.
  • Jeder minimale a-b-Trenner zu zwei Ecken a und b ist eine Clique.
  • Jeder induzierte Teilgraph enthält eine simpliziale Ecke (Rose, 1970), also eine Ecke, deren Nachbarn eine Clique bilden.
  • G ist Schnittgraph einer Menge von Teilbäumen eines Baums (Gavril, 1974).

Eigenschaften

In chordalen Graphen lässt sich die Berechnung der Parameter Cliquenzahl, chromatische Zahl, Unabhängigkeitszahl und Cliquenüberdeckungszahl – für beliebige Graphen NP-schwere Probleme – in Linearzeit durchführen. Die Charakterisierung über simpliziale Ecken ermöglicht einen Chordalitätstest in Linearzeit. Als perfekte Eliminationsordnung bezeichnet man dabei eine Knotenreihenfolge (v1,v2,,vn),V={v1,v2,,vn} des Graphen G=(V,E), sodass für jeden Graphen mit der (durch Eliminierung der Knoten v1 bis vi1) eingeschränkten Knotenmenge Gi=({vi,,vn},Ei) gilt: vi ist simplizial in Gi. Jeder (in Bezug auf die gewählte Ordnung) „kleinste“ Knoten in Gi bildet also mit seinen Nachbarn eine Clique.

Literatur

  • Jorge L. Ramírez Alfonsín, Bruce A. Reed: Perfect Graphs. Wiley 2001, ISBN 978-0-471-48970-2, S. 14 (Vorlage:Google Buch)
  • Sven Oliver Krumke und Hartmut Noltemeier: Graphentheoretische Konzepte und Algorithmen. 2. Auflage. Vieweg-Teubner 2009. ISBN 978-3-8348-0629-1. S. 61