Datei:Globale erwärmung.svg

Aus testwiki
Zur Navigation springen Zur Suche springen
Originaldatei (SVG-Datei, Basisgröße: 480 × 346 Pixel, Dateigröße: 138 KB)

Diese Datei stammt aus Wikimedia Commons und kann von anderen Projekten verwendet werden. Die Beschreibung von deren Dateibeschreibungsseite wird unten angezeigt.

Beschreibung

Beschreibung
Deutsch: Globale Erwärmung und Anstieg der CO2-Konzentration
Datum
Quelle Eigenes Werk
Urheber Physikinger
SVG‑Erstellung
InfoField
 Der SVG-Code ist valide.
 Dieser Plot wurde mit Matplotlib erstellt.
Quelltext
InfoField

Python code

import numpy, scipy.spatial
import matplotlib.pyplot as plt
import matplotlib
from matplotlib.colors import LinearSegmentedColormap

year_T = {
    # https://data.giss.nasa.gov/gistemp/tabledata_v4/GLB.Ts+dSST.txt
    # GLOBAL Land-Ocean Temperature Index in 0.01 degrees Celsius   base period: 1951-1980
    # sources:  GHCN-v4 1880-07/2021 + SST: ERSST v5 1880-07/2021
    # using elimination of outliers and homogeneity adjustment
    # Divide by 100 to get changes in degrees Celsius (deg-C).
    # Year  J-D (annual mean Temperature Jan to Dec)
    1880: -18, 1881: -10, 1882: -12, 1883: -18, 1884: -29,
    1885: -34, 1886: -32, 1887: -37, 1888: -18, 1889: -11,
    1890: -36, 1891: -23, 1892: -28, 1893: -32, 1894: -31,
    1895: -23, 1896: -12, 1897: -12, 1898: -28, 1899: -18,
    1900:  -9, 1901: -16, 1902: -29, 1903: -38, 1904: -48,
    1905: -27, 1906: -22, 1907: -39, 1908: -43, 1909: -49,
    1910: -44, 1911: -44, 1912: -37, 1913: -35, 1914: -16,
    1915: -15, 1916: -37, 1917: -46, 1918: -30, 1919: -28, 
    1920: -28, 1921: -19, 1922: -29, 1923: -27, 1924: -27,
    1925: -22, 1926: -11, 1927: -22, 1928: -20, 1929: -36,
    1930: -16, 1931: -10, 1932: -16, 1933: -28, 1934: -12,
    1935: -20, 1936: -15, 1937:  -3, 1938:   0, 1939:  -2,
    1940:  12, 1941:  18, 1942:   6, 1943:   9, 1944:  20,
    1945:   9, 1946:  -7, 1947:  -3, 1948: -11, 1949: -11,
    1950: -17, 1951:  -7, 1952:   1, 1953:   8, 1954: -13,
    1955: -14, 1956: -19, 1957:   5, 1958:   6, 1959:   3,
    1960: -3,  1961:   6, 1962:   3, 1963:   5, 1964: -20,
    1965: -11, 1966:  -6, 1967:  -2, 1968:  -8, 1969:   5,
    1970:   3, 1971:  -8, 1972:   1, 1973:  16, 1974:  -7,
    1975:  -1, 1976: -10, 1977:  18, 1978:   7, 1979:  16,
    1980:  26, 1981:  32, 1982:  14, 1983:  31, 1984:  16,
    1985:  12, 1986:  18, 1987:  32, 1988:  39, 1989:  27,
    1990:  45, 1991:  40, 1992:  22, 1993:  23, 1994:  31,
    1995:  44, 1996:  33, 1997:  47, 1998:  61, 1999:  38,
    2000:  39, 2001:  53, 2002:  63, 2003:  62, 2004:  53,
    2005:  68, 2006:  64, 2007:  66, 2008:  54, 2009:  66,
    2010:  73, 2011:  61, 2012:  65, 2013:  68, 2014:  75,
    2015:  90, 2016: 101, 2017:  92, 2018:  85, 2019:  98,
    2020: 101, 2021:  85, 2022:  89, 2023: 117, 2024: 128
    }

year_Temperature, Temperature = (numpy.array(list(x()), dtype='d') for x in (year_T.keys, year_T.values))
Temperature = Temperature / 100

year1 = 1880

# Keeling curve, monthly data, taken at Mauna Loa, Observatory, Hawaii
#
# C. D. Keeling, et al., Exchanges of atmospheric CO2 and 13CO2 with
# the terrestrial biosphere and oceans from 1978 to 2000.
# I. Global aspects, SIO Reference Series, No. 01-06,
# Scripps Institution of Oceanography, San Diego, 88 pages, 2001.
#
# https://scrippsco2.ucsd.edu/data/atmospheric_co2/mlo.html
# data from https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/monthly/monthly_in_situ_co2_mlo.csv

with open("monthly_in_situ_co2_mlo.csv", 'r') as f:
    t, ppm_Keeling = [], []
    for line in f:
        if not line.startswith('"') and not line.startswith(' '):
            data = line.split(',')
            val = float(data[8])
            if val > 0:
                t.append(float(data[3]))
                ppm_Keeling.append(val)
    year_Keeling, ppm_Keeling = map(numpy.array, (t, ppm_Keeling))

# CO2 concentration from ice core measurements
#
# Rubino et al. 2013, https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/jgrd.50668
# Colum 1: effective age [AD] for CO2
# Colum 2: CO2 corrected for blank and gravity [ppm]
#
CO2_ice_core = [
    [1993.0, 354.31], [1993.0, 353.58], [1991.0, 352.5], [1991.0, 352.33], [1991.0, 351.83],
    [1990.0, 351.14], [1990.0, 350.72], [1990.0, 350.57], [1989.0, 349.53], [1989.0, 349.02],
    [1988.0, 347.6], [1987.0, 345.44], [1987.0, 345.14], [1987.0, 344.97], [1987.0, 344.51],
    [1987.0, 344.25], [1986.0, 344.28], [1986.0, 343.66], [1986.0, 343.64], [1986.0, 342.88],
    [1986.0, 342.8], [1985.0, 342.53], [1985.0, 341.57], [1983.0, 339.52], [1983.0, 339.41],
    [1979.0, 335.23], [1979.0, 334.47], [1976.0, 332.37], [1996.0, 359.62], [1996.0, 359.67],
    [1996.0, 359.65], [1994.0, 357.35], [1994.0, 356.96], [1994.0, 357.02], [1994.0, 357.09],
    [1992.0, 353.86], [1992.0, 353.66], [1992.0, 353.65], [1992.0, 353.73], [1989.0, 350.05],
    [1989.0, 349.8], [1989.0, 349.78], [1989.0, 349.58], [1983.0, 341.58], [1983.0, 341.16],
    [1983.0, 341.42], [1983.0, 341.15], [1971.0, 324.9], [1971.0, 324.88], [1971.0, 325.04],
    [1971.0, 324.8], [1957.0, 316.44], [1957.0, 316.29], [1957.0, 316.33], [1957.0, 316.24],
    [1938.0, 312.5], [1938.0, 312.58], [1938.0, 312.23], [1938.0, 312.31], [1938.0, 312.07],
    [1938.0, 312.28], [1998.0, 361.78], [2001.0, 368.0], [2001.0, 368.04], [1929.0, 305.84],
    [1929.0, 305.23], [1929.0, 305.39], [1929.0, 305.37], [1929.0, 305.16], [1929.0, 305.3],
    [1962.0, 316.59], [1972.0, 330.35], [1977.0, 335.55], [1977.0, 332.37], [1956.0, 314.46],
    [1956.0, 315.54], [1956.0, 316.04], [1969.0, 323.87], [1969.0, 324.09], [1969.0, 320.38],
    [1974.0, 331.55], [1950.0, 312.0], [1967.0, 320.49], [1972.0, 328.42], [1965.0, 319.2],
    [1965.0, 319.89], [1971.0, 326.31], [1971.0, 326.65], [1970.0, 324.56], [1964.0, 319.12],
    [1969.0, 325.54], [1963.0, 319.07], [1969.0, 325.08], [1963.0, 319.78], [1963.0, 317.45],
    [1940.0, 309.8], [1963.0, 317.45], [1962.0, 319.14], [1962.0, 317.52], [1938.0, 308.48],
    [1967.0, 322.17], [1960.0, 313.09], [1966.0, 320.98], [1959.0, 316.33], [1958.0, 316.1],
    [1958.0, 314.57], [1957.0, 315.27], [1929.0, 305.78], [1957.0, 314.24], [1957.0, 314.64],
    [1928.0, 305.67], [1955.0, 314.83], [1955.0, 314.6], [1961.0, 318.21], [1954.0, 313.17],
    [1954.0, 312.8], [1954.0, 312.75], [1954.0, 311.69], [1959.0, 311.98], [1952.0, 312.18],
    [1950.0, 313.66], [1949.0, 309.69], [1948.0, 311.57], [1947.0, 313.21], [1947.0, 312.52],
    [1906.0, 299.63], [1946.0, 312.56], [1945.0, 311.28], [1945.0, 310.22], [1902.0, 297.14],
    [1944.0, 312.36], [1942.0, 311.62], [1942.0, 312.14], [1942.0, 312.74], [1942.0, 312.05],
    [1941.0, 307.74], [1941.0, 311.8], [1947.0, 310.36], [1946.0, 311.97], [1945.0, 311.81],
    [1939.0, 311.04], [1939.0, 311.39], [1939.0, 312.36], [1939.0, 308.55], [1945.0, 310.44],
    [1893.0, 295.32], [1938.0, 310.66], [1938.0, 312.38], [1937.0, 307.06], [1937.0, 307.76],
    [1936.0, 309.52], [1936.0, 309.17], [1942.0, 311.9], [1942.0, 313.78], [1936.0, 307.26],
    [1935.0, 306.32], [1934.0, 306.76], [1934.0, 306.63], [1934.0, 307.84], [1884.0, 289.23],
    [1940.0, 310.95], [1933.0, 305.94], [1933.0, 308.28], [1932.0, 308.26], [1938.0, 311.94],
    [1931.0, 305.72], [1931.0, 305.76], [1929.0, 305.71], [1928.0, 307.62], [1928.0, 308.42],
    [1934.0, 309.63], [1868.0, 287.99], [1925.0, 305.32], [1925.0, 304.62], [1923.0, 306.13],
    [1923.0, 307.7], [1923.0, 303.14], [1923.0, 307.82], [1923.0, 303.18], [1920.0, 301.88],
    [1925.0, 304.72], [1919.0, 304.61], [1918.0, 303.44], [1918.0, 303.67], [1918.0, 304.06],
    [1918.0, 304.24], [1851.0, 288.79], [1916.0, 301.92], [1914.0, 301.07], [1914.0, 300.33],
    [1847.0, 286.84], [1913.0, 301.3], [1911.0, 299.26], [1911.0, 297.73], [1911.0, 298.11],
    [1910.0, 297.87], [1837.0, 284.15], [1909.0, 301.5], [1833.0, 283.82], [1906.0, 297.33],
    [1905.0, 299.02], [1904.0, 295.99], [1827.0, 285.91], [1825.0, 281.36], [1902.0, 295.26],
    [1902.0, 294.44], [1900.0, 294.22], [1899.0, 297.05], [1899.0, 295.28], [1814.0, 284.43],
    [1894.0, 293.81], [1894.0, 293.17], [1893.0, 294.86], [1892.0, 295.17], [1890.0, 290.92],
    [1889.0, 292.38], [1889.0, 292.3], [1799.0, 281.23], [1799.0, 284.37], [1887.0, 294.34],
    [1796.0, 280.4], [1796.0, 282.3], [1886.0, 288.12], [1794.0, 281.62], [1884.0, 289.76],
    [1883.0, 292.46], [1880.0, 287.77], [1780.0, 273.07], [1877.0, 289.33], [1779.0, 280.24],
    [1874.0, 291.56], [1873.0, 286.66], [1773.0, 277.86], [1870.0, 286.33], [1870.0, 287.99],
    [1868.0, 289.83], [1868.0, 289.24], [1764.0, 276.4], [1867.0, 284.71], [1867.0, 285.4],
    [1763.0, 277.16], [1864.0, 286.65], [1863.0, 285.35], [1752.0, 276.46], [1752.0, 278.0],
    [1862.0, 287.17], [1749.0, 277.6], [1859.0, 286.63], [1857.0, 283.16], [1741.0, 276.81],
    [1855.0, 285.57], [1854.0, 288.05], [1734.0, 278.31], [1851.0, 285.47], [1850.0, 284.0],
    [1723.0, 277.01], [1723.0, 278.27], [1846.0, 282.79], [1846.0, 284.45], [1845.0, 283.18],
    [1844.0, 283.53]]

year_ice, ppm_ice = numpy.array(CO2_ice_core).T

# Calculate temperature trend
# nPoly = 4
# phi = numpy.array([year_Temperature**i for i in range(nPoly)])
# A = phi @ phi.T
# b = phi @ Temperature
# c = numpy.linalg.solve(A, b)
# yPoly = c @ phi

tRef0, tRef1 = 1880, 1920
TMargin = 0.18
CO2Min, CO2Max = 285, 500
TemperaturReference = numpy.mean(Temperature[(year_Temperature >= tRef0) & (year_Temperature < tRef1)])
TemperatureShifted = Temperature - TemperaturReference
numpy.mean(TemperatureShifted[year_Temperature<1920])


# Ice core data smoothing from scattered data
#
# Covariance model according to Reference:
# C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 
# 2006, ISBN 026218253X, 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml
# Section 5.4.3 Examples and Discussion
#
# Here we ignore k2, since the ice core data have
# no seasonal cycle.

def k1(d,p1=66,p2=67): return p1**2*numpy.exp(-d**2/(2*p2**2))
def k2(d,p3=2.4,p4=90,p5=1.3): return p3**2*numpy.exp(-d**2/(2*p4**2) - 2*numpy.sin(numpy.pi*d)**2/p5**2)
def k3(d,p6=0.66,p7=1.2,p8=0.78): return p6*(1+d**2/(2*p8*p7**2))**(-p8)
def k4(d,p9=0.18,p10=1.6): return p9**2*numpy.exp(-d**2/(2*p10**2))
def kNoise(p11=0.19): return p11**2
covFunc = lambda d: k1(d) + k3(d) + k4(d)
def covMat(x1, x2, covFunc, noise=0):  # Covariance matrix
    cov = covFunc(scipy.spatial.distance_matrix(numpy.atleast_2d(x1).T, numpy.atleast_2d(x2).T))
    if not noise==0: cov += numpy.diag(numpy.zeros(len(x1)) + noise)
    return cov

x_known = year_ice
y_known = ppm_ice
m = numpy.mean(y_known) # Parameter in Reference 341

nDivideYear = 4
x_unknown = numpy.arange(1880*nDivideYear, year_Keeling[0]*nDivideYear) / nDivideYear

Ckk = covMat(x_known, x_known, covFunc, noise=2) # Noise assumption 2 ppm
Cuu = covMat(x_unknown, x_unknown, covFunc)
CkkInv = numpy.linalg.inv(Ckk)
Cuk = covMat(x_unknown, x_known, covFunc)

covPost = Cuu - numpy.dot(numpy.dot(Cuk,CkkInv),Cuk.T)
y_unknown = numpy.dot(numpy.dot(Cuk,CkkInv),y_known - m) + m

year_reconstructed = x_unknown
ppm_reconstructed = y_unknown

year_Total = numpy.concatenate([year_reconstructed, year_Keeling])
ppm_Total = numpy.concatenate([ppm_reconstructed, ppm_Keeling])

# Plot the figure

class LegendTitle(object):
    def __init__(self, text_props=None):
        self.text_props = text_props or {}
        super(LegendTitle, self).__init__()
    def legend_artist(self, legend, orig_handle, fontsize, handlebox):
        x0, y0 = handlebox.xdescent, handlebox.ydescent
        title = matplotlib.text.Text(x0, y0, orig_handle, **self.text_props)
        handlebox.add_artist(title)
        return title        

fig = plt.figure(figsize=(5.0,3.6))
TMin = numpy.min(TemperatureShifted) - TMargin
plt.title('CO${}_2$-Anstieg und globale Erwärmung')
axTemp = plt.gca()
axTemp.tick_params(axis='y', colors='C3')
axCO2 = plt.gca().twinx()
axCO2.tick_params(axis='y', colors='#0040F0')
polygon = axTemp.fill_between(list(year_Temperature) + [year_Total[-1]],
        TMin, list(TemperatureShifted)+[TemperatureShifted[-1]], color='none')
p1, = axTemp.plot(year_Temperature, TemperatureShifted, 'C3-', linewidth=1,
        markersize=3, label=f"relativ zum Mittelwert von {tRef0}-"f"{tRef1}")
axCO2.fill_between(year_Total, CO2Min, ppm_Total, color='#60B0FF', alpha=0.6)
p2, = axCO2.plot(year_Keeling, ppm_Keeling, '-', color='#0020F0', linewidth=0.8,
        label='aus Luftmessungen (Hawaii)')
p3, = axCO2.plot(year_reconstructed, ppm_reconstructed, '-', color='#00C0F0',
        linewidth=1.4, label='aus Eisbohrkernen (Südpol)')
cm = LinearSegmentedColormap.from_list("Custom", [(1, 0.96, 0.96),
        (1, 0.68, 0.68)], N=256//4)
verts = numpy.vstack([p.vertices for p in polygon.get_paths()])
gradient = axTemp.imshow(numpy.linspace(0, 1, 256//4)[None,:],
        cmap=cm, aspect='auto', extent=[verts[:, 0].min(), verts[:, 0].max(),
        verts[:, 1].min(), verts[:, 1].max()])
gradient.set_clip_path(polygon.get_paths()[0], transform=axTemp.transData)
axTemp.set_xlabel('Zeit (Jahr)')
axTemp.set_ylabel('Relative Temperatur (°C)', color='C3')
axCO2.set_ylabel('CO${}_2$-Konzentration (ppm)', color='#0040F0')
axTemp.yaxis.set_label_coords(-0.13, 0.53)
axTemp.set_ylim(None,1.56)
axTemp.set_ylim(TMin,None)
axCO2.set_ylim(CO2Min,CO2Max)
plt.xlim(year_Total[0], year_Total[-1])
labels = [i.get_label() if i else i for i in ['',p1,'',p3,p2]]
font = {'color':"C3", 'weight':'bold'}
legend = axTemp.legend(['Globale Temperatur:', p1,
        'CO${}_\\mathregular{2}$-Konzentration:', p3, p2],
        labels, frameon=False, handler_map={str: LegendTitle(font)})
legend.legend_handles[2].set_color('#0040F0')
plt.tight_layout()
plt.savefig('Globale_erwärmung.svg')

Lizenz

Ich, der Urheber dieses Werkes, veröffentliche es unter der folgenden Lizenz:
Creative Commons CC-Zero Diese Datei wird unter der Creative-Commons-Lizenz CC0 1.0 Verzicht auf das Copyright zur Verfügung gestellt.
Die Person, die das Werk mit diesem Dokument verbunden hat, übergibt dieses weltweit der Gemeinfreiheit, indem sie alle Urheberrechte und damit verbundenen weiteren Rechte – im Rahmen der jeweils geltenden gesetzlichen Bestimmungen – aufgibt. Das Werk kann – selbst für kommerzielle Zwecke – kopiert, modifiziert und weiterverteilt werden, ohne hierfür um Erlaubnis bitten zu müssen.

Lizenz

Ich, der Urheber dieses Werkes, veröffentliche es unter der folgenden Lizenz:
Creative Commons CC-Zero Diese Datei wird unter der Creative-Commons-Lizenz CC0 1.0 Verzicht auf das Copyright zur Verfügung gestellt.
Die Person, die das Werk mit diesem Dokument verbunden hat, übergibt dieses weltweit der Gemeinfreiheit, indem sie alle Urheberrechte und damit verbundenen weiteren Rechte – im Rahmen der jeweils geltenden gesetzlichen Bestimmungen – aufgibt. Das Werk kann – selbst für kommerzielle Zwecke – kopiert, modifiziert und weiterverteilt werden, ohne hierfür um Erlaubnis bitten zu müssen.

Kurzbeschreibungen

Globale Erwärmung und Anstieg der CO2-Konzentration

In dieser Datei abgebildete Objekte

Motiv

Einige Werte ohne einen Wikidata-Eintrag

image/svg+xml

Dateiversionen

Klicke auf einen Zeitpunkt, um diese Version zu laden.

Version vomVorschaubildMaßeBenutzerKommentar
aktuell12:28, 12. Jan. 2025Vorschaubild der Version vom 12:28, 12. Jan. 2025480 × 346 (138 KB)wikimediacommons>PhysikingerUpdate 2024

Die folgende Seite verwendet diese Datei: